Protonation of 3-Arylpropynoic Acid Derivatives in Superacids

S. Walspurger¹, A. V. Vasil'ev², J. Sommer¹, P. Pale¹, P. Yu. Savechenkov², and A. P. Rudenko²

¹ Universite L. Pasteur, rue B. Pascal 4, Strasbourg, 67000 France

² St. Petersburg Academy of Forestry Engineering, Institutskii per. 5, St. Petersburg, 194021 Russia e-mail: aleksvasil@hotmail.com

Received November 12, 2004

Abstract—According to the ¹H and ¹³C NMR data, 3-arylpropynoic acids and their esters XC_6H_n —C=C–CO₂R (R = H, Me, Et) having electron-withdrawing substituents in the benzene ring (X = NO₂, CN, COMe, CO₂Me) exist in HSO₃F at -80 to 0°C as XC_6H_n —C=C–C⁺(OH)OR ions. Derivatives with other substituents (X = H, F, Me, MeO) in HSO₃F or CF₃SO₃H above -40°C undergo protonation at the acetylenic carbon atom neighboring to the acid group to give unstable vinyl-type XC_6H_n —C⁺=CH–CO₂R cations which are then transformed into mixtures of stereoisomeric (*Z* and *E*) fluorosulfonates or trifluoromethanesulfonates XC_6H_n —CY=CH–CO₂R (Y = OSO₂F, OSO₂CF₃), the *E* isomer prevailing.

We recently initiated studies on protonation and subsequent transformations of acetylenic compounds in superacidic media [1–6], which opened new prospects in the application of superacids [7] in synthetic organic chemistry. Stang [8, 9] and Olah [10] were the first to report on the addition of superacids (HSO₃F and CF₃SO₃H) to alkyl- and dialkylacetylenes with formation of the corresponding vinyl fluorosulfonates and trifluoromethanesulfonates. The transformations in HSO₃F of acetylenic compounds with strong electronwithdrawing substituents were studied using propynoic, 2-butynoic, and 3-phenylpropynoic acids as examples [10]; however, the mechanism of formation of fluorosulfonates thus obtained and their stereochemical structure were not determined.

Despite apparent simplicity of processes involving addition of superacids at a triple carbon–carbon bond, study of the reaction mechanism and development of synthetic procedures on the basis of this reaction are important for the preparation of fluorosulfonates and trifluoromethanesulfonates [11]. Trifluoromethanesulfonates possessing various functional groups attract specific interest from the viewpoint of their use in Pdcatalyzed reactions leading to formation of new C–C bonds [12–14]. In particular, access to such compounds may be opened via addition of CF₃SO₃H to 3-arylpropynoic acid derivatives.

The present communication reports on the behavior of 3-arylpropynoic acid derivatives in superacids (HSO₃F and CF₃SO₃H), reactivity of the O- and C-protonated species thus formed, and stereochemical aspects of the addition of HSO₃F and CF₃SO₃H at the triple bond of the substrate.

¹H and ¹³C NMR monitoring of the reactions of 3-arylpropynoic acids Ia-Ie and the corresponding ethyl esters If-In with HSO₃F at -80° C revealed

I, IIa–IIh, IIIa–IIIh, IIIa–IIIh, IIIk–IIIm, R = H, X = $3-O_2N$ (a), $4-O_2N$ (b), 4-NC (c), 4-F (d), $4-MeO-3-O_2N$ (e); R = Et, X = $3-O_2N$ (f), $4-O_2N$ (g), 4-NC (h), 4-MeCO (i), 4-MeOCO (j), $3,4-(O_2N)_2$ (k), $4-MeO-3-O_2N$ (l), $2,5-Me_2-4-O_2N$ (m), $4-EtOCOC\equiv C$ (n); IIi, IIj, IIn, IIIi, IIIj, IIIn, R = Et, X = $4-MeC^+(OH)$ (i), $4-MeOC^+(OH)$ (j), $4-EtOC^+(OH)C\equiv C$ (o).

formation of stable cations **IIa–IIn** via protonation of the carbonyl oxygen atom (Scheme 1). The ¹H and ¹³C NMR spectra of protonated acids **IIa–IIe** in HSO₃F at -80 and 0°C are given in Tables 1 and 2, and Tables 3 and 4 contain the ¹H and ¹³C NMR data for protonated ethyl 3-arylpropynoates **IIf–IIn** in HSO₃F at -80°C. For comparison, the NMR spectra of precursors **Ia–Ic** and **If–In** in CDCl₃ or CD₃OD at 25°C are also given in Tables 2 and 4. The ¹³C signals were assigned by analysis of their multiplicity in the proton-coupled spectra of ions **IIa**, **IIg**, and **IIh** and neutral compounds **Ia–Ic** and **If–In** (Tables 2 and 4 contain only proton-decoupled ¹³C NMR spectra of the latter).

Protonated esters **IIf**–**IIn** in HSO₃F at -80° C showed in the ¹H NMR spectra a broadened singlet in the δ region 13.5–14.5 ppm from proton on the carbonyl oxygen atom (Table 3). The corresponding signal of protonated acids **Ia–Ie** was not detected even at -80° C due to fast exchange with the acidic medium (Table 1), while protonated esters **If–In** did not display that signal at 0°C. Diester **In** in HSO₃F undergoes protonation at both carbonyl groups to give dication **IIn** (Scheme 1; Tables 3, 4).

In the examined ¹H NMR spectra of **IIa–IIc**, **IIe**, **IIf–IIh**, and **IIk–IIm** in HSO₃F we observed no signal from proton that added to electron-withdrawing groups $(X = NO_2, CN)$ in the benzene ring; an analogous pattern was typical of protonation of 1,3-diarylpropynones in superacids [2]. Compounds **IIi** and **IIj** (X = 4-COMe and 4-CO₂Me) take up an additional proton at the X substituent, and the corresponding signal is present in the ¹H NMR spectra (Table 3). The different behaviors in HSO₃F of the NO₂ and CN groups in

Table 1. ¹H NMR spectra of ions **IIa–IIe** generated from3-arylpropynoic acids **Ia–Ie** in HSO_3F

Ion no.	Tempera- ture, °C	Chemical shifts δ , ppm (<i>J</i> , Hz)
IIa	-80	7.97 s (1H), 8.41 s (1H), 8.74 s (1H), 8 89 s (1H)
	0	7.94 t (1H, <i>J</i> = 8.1), 8.35 d (1H, <i>J</i> = 8.1), 8.70 d (1H, <i>J</i> = 8.1), 8.84 s (1H)
IIb	-80	8.20 s (2H), 8.58 s (2H)
	0	8.17 d (2H, <i>J</i> = 8.6), 8.55 d (2H, <i>J</i> = 8.6)
IIc	-80	8.17 d (2H, <i>J</i> = 6.6), 8.31 d (2H, <i>J</i> = 6.6)
	0	8.13 d (2H, <i>J</i> = 7.3), 8.20 d (2H, <i>J</i> = 7.3)
IId	-80	7.35 s (2H), 8.00 s (2H)
IIe	-80	4.49 s (3H, OMe), 7.71 d (1H, <i>J</i> = 6.5), 8.52 d (1H, <i>J</i> = 6.5), 9.09 s (1H)

structures **IIa–IIc**, **IIe**, **IIf–IIh**, and **IIk–IIm**, on the one hand, and COMe and CO₂Me groups in **IIi** and **IIj**, on the other, are reflected in Scheme 1.

Insofar as HSO_3F at $-80^{\circ}C$ is characterized by a high viscosity, in most cases signals from aromatic protons and protons in the CH₂ and CH₃ groups of the ester fragment of ions **IIf–IIn** appeared in the ¹H NMR spectra as broadened singlets with unresolved fine structure (Tables 1, 3). In the spectra recorded at 0°C we observed well resolved multiplets typical of aromatic systems (Table 1).

The C¹ signal in the ¹³C NMR spectra of ions **IIa–IIc** and **IIf–IIn** in HSO₃F is located at δ_{C} 165.7– 168.5 ppm, i.e., in a weaker field (by 11–13 ppm) than the corresponding signal of neutral acids and esters Ia-Ic and If-In in CDCl₃ or CD₃OD (Tables 2, 4). Likewise, the spectra of protonated species IIa-IIc and **IIf**-**IIn** are characterized by an appreciably more downfield position of the C³ signal ($\delta_{\rm C}$ 99–108 ppm in HSO₃F against $\delta_{\rm C}$ 79–85 ppm in the spectra of **Ia–Ic** and **If–In** in CDCl₃ and CD₃OD; $\delta \Delta_{\rm C} = 17-24$ ppm; Tables 2, 4). These data suggest delocalization of the positive charge over the arylethynyl fragment, i.e., a considerable contribution of canonical structures IIIa-IIIn to the charge distribution (Scheme 1). The position of the C¹ signal in the ¹³C NMR spectra of **IIa–IIc** and **IIf–IIn** in HSO₃F (δ_{C} 165.7–168.5 ppm) indicates formation of protonated species IIa-IIn rather than the corresponding acylium (arylpropynoyl) ions which are characterized by a C¹ signal located at δ_C 124 ppm [15].

NMR analysis of the protonation of 3-arylpropynoic acid derivatives showed that compounds **Ia–Ic**, **If–Ik**, **Im**, and **In** containing strong electron-withdrawing substituents in the aromatic ring (X = NO₂, CN, COMe, CO₂Me, etc.) in HSO₃F exist as stable ions **IIa–IIc**, **IIf–IIk**, **IIm**, and **IIn** even at 0°C. Their ¹H NMR spectra lacked signals in the δ region 6–7 ppm, which could be assigned to vinyl protons in products of HSO₃F addition at the triple bond.

Compounds Id, Ie, and Il (X = 4-F, 4-MeO-3-NO₂) in HSO₃F at -80° C also give rise to the corresponding O-protonated species IId, IIe, and III (Scheme 1). However, raising the temperature to -40° C leads to rearrangement into C-protonated vinyl-type cations Ar-C⁺=CH-CO₂R which are then converted into mixtures of isomeric *E*- and *Z*-fluorosulfonates IVd, IVe, and IVI (Scheme 2). Likewise, 3-phenylpropynoic acid (Io), its methyl ester Ip, and *para*-fluoro-substituted ester Iq in HSO₃F above -40° C are converted into

Comp.	Solvent	Tempera-	Chemical shifts δ, ppm (J, Hz)							
no.	no.		$C^1 = O^a$	C^2	C ³	C^i	C^o	\mathbf{C}^m	\mathbf{C}^p	
Ia	CDCl ₃	25	156.62	81.58	84.89	121.08	127.86, 138.47	148.14, 129.90	125.57	
IIa	$\mathrm{HSO}_3\mathrm{F}^\mathrm{b}$	-80	168.03 s	76.86 s	106.73 s	118.23 d	131.61 d (175.0),	146.45 m (4.0),	131.01 d	
		0	168.47 s	76.86 s	108.04 t (5.6)	(9.2) 118.36 d (9.6)	131.38 d.t (174.5, 5.6), 143.71 d.t (169.7, 6)	132.49 d (171.2) 147.39 m (4.8), 132.54 d (171.3)	(171.0) 130.98 d.m (170.1, 3.6)	
Ib	CD ₃ OD	25	156.76	86.34	84.84	121.08	135.81	125.84	150.97	
IIb	HSO ₃ F	-80	167.93	78.05	105.68	124.61	125.58	137.25	149.03	
		0	168.37	78.27	106.86	124.45	125.67	137.20	149.98	
Ic	CD ₃ OD	25 ^c	156.82	85.90	84.65	126.88	134.59	134.59	116.01	
IIc	HSO ₃ F	-80^{d}	168.04	78.25	105.40	125.29	136.29	136.38	108.36	
		0 ^e	168.48	78.33	107.01	124.47	135.78	136.35	111.03	

Table 2. ¹³C NMR spectra of 3-arylpropynoic acids **Ia–Ic** in CDCl₃ or CD₃OD (25°C) and ions **IIa–IIc** generated therefrom in HSO₃F (-80 and 0° C)

^a In HSO₃F, signal from the protonated carboxy group.

^b Proton-coupled spectrum.

 $^{\circ}_{\circ}$ $\delta_{\rm C} CN$ 119.85 ppm.

^d $\delta_C CN$ 106.83 ppm.

^e $\delta_{\rm C}$ CN 110.24 ppm.

Table 3.	¹ H NMR spectra of ions	IIf-IIn generated	from ethyl 3-arylpropynoates	If-In in HSO ₃ F at -	80°C
----------	------------------------------------	-------------------	------------------------------	----------------------------------	------

Ion no.	Chemical shifts, δ , ppm (<i>J</i> , Hz)								
	OCH ₂ CH ₃ ^a	$CH_2CH_3^{a}$	H _{arom} , X	$^{+}C^{1}-OH$					
IIf	5.07	1.66	7.97 s (1H), 8.39 s (1H), 8.73 s (1H), 8.87 s (1H)	13.6 s					
IIg	5.08	1.66	8.16 s (2H), 8.56 s (2H)	13.7 s					
IIh	5.06	1.65	8.13 s (2H), 8.25 s (2H)	13.9 s					
IIi ^b	5.09	1.66	3.45 s (3H, Me), 8.18 s (2H), 8.63 s (2H)	14.46 s					
IIj ^c	5.07	1.65	4.69 s (3H, OMe), 8.17 s (2H), 8.32 s (2H)	13.5 s					
IIk	5.09	1.65	8.25 d (1H, <i>J</i> = 8.2), 8.41 d (1H, <i>J</i> = 8.2), 8.61 s (1H)	14 s					
III	5.05	1.64	4.52 s (3H, OMe), 7.73 d (1H, <i>J</i> = 8.2), 8.52 d (1H, <i>J</i> = 8.2), 9.02 s (1H)	13.6 s					
IIm	5.09	1.66	2.71 s (3H, Me), 2.75 s (3H, Me), 8.02 s (1H), 8.73 s (1H)	13.8 s					
IIn	5.05	1.64	8.01 s (4H)	13.52 s					

^a The CH₂ and CH₃ signals appeared as singlets (for details, see text).

^b The protonated acetyl group in the benzene ring gave a singlet at δ 14.4 ppm.

^c The protonated methoxycarbonyl group in the benzene ring gave a singlet at δ 13.7 ppm.

E/Z-fluorosulfonates **IVo–IVq**. Isomeric trifluoromethanesulfonates **Vo** and **Vp** are formed From compounds **Io** and **Ip** in CF₃SO₃H at 0°C (Scheme 2).

The addition of superacids to compounds Id, Ie, Il, and Io–Iq was monitored, and the E/Z-isomer ratios in products IVd, IVe, IVl, IVo–IVq, Vo, and Vp were determined, by NMR spectroscopy (the reactions were carried out in NMR ampules). The results are collected in Table 5. No vinyl-type cations were detected,

though they should be formed as unstable intermediates via protonation of the triple carbon–carbon bond in the substrates by HSO₃F or CF₃SO₃H. The isomer structure of compounds **IVd**, **IVe**, **IVI**, **IVo–IVq**, **Vo**, and **Vp** was assigned by analysis of the ¹H NMR spectra of the isomer mixtures. Comparison of the ¹H NMR spectrum of *E*-**IVo** [10] with that of isomer mixture *E*-**IVo**/*Z*-**IVo** showed that signal from the vinyl proton in the *E* isomer is located in a stronger field than the

Comp.	Salvant	Chemical shifts δ_{C} , ppm (<i>J</i> , Hz)							
no.	Solvent	C^1	C^2	C ³	C _{arom}	OCH ₂	CH ₃	Х	
If	CDCl ₃	153.03	82.13	82.22	121.28, 124.97, 127.32, 129.71, 138.10, 147.89	62.27	13.80		
IIf	HSO ₃ F	166.02	81.97	102.96	118.64, 130.58, 131.32, 132.41, 144.27, 146.30	78.32	12.78		
Ig	CDCl ₃	153.05	84.04	82.52	123.58, 126.10, 133.51, 148.34	62.39	13.89		
IIg	HSO ₃ F ^a	166.00 s	82.04 s	102.46 s	125.31 s, 125.70 d (173.7), 136.98 d (171.3), 148.61 s	78.33 t (152.40)	12.74 q (129.59)		
Ih	CDCl ₃	153.10	83.51	82.89	113.8, 124.21, 132.06, 133.05	62.29	13.82	117.61 (CN)	
IIh	HSO ₃ F ^a	165.90 s	81.79 s	102.00 s	109.30 s, 124.78 s, 135.64 d.d (173.0, 10.0), 135.78 d.d (173.3, 10.4)	77.98 t (130.39)	12.66 q (127.58)	108.28 s (CN)	
Ii	CDCl ₃	153.26	82.62	84.06	123.85, 128.01, 132.70, 137.75	62.01	13.76	26.33 (CH ₃), 196.61 (C=O)	
IIi	HSO₃F	165.98	79.21	101.55	129.54, 132.49, 135.96	78.59	12.64	26.28 (CH ₃), 222.73 (C=OH ⁺)	
Ij	CDCl ₃	153.48	82.56	84.30	123.98, 129.46, 131.53, 132.62	62.14	13.90	52.24 (CH ₃), 165.85 (C=O)	
IIj	HSO₃F	166.07	82.28	102.49	126.36, 132.03, 136.28	78.60	12.76	64.03 (CH ₃), 181.85 (C=OH ⁺)	
Ik	CDCl ₃	152.56	85.47	79.69	125.53, 125.95, 128.76, 137.11, 142.77	62.85	13.87		
IIk	HSO ₃ F	165.93	78.24	99.06	123.26, 127.84, 132.46, 141.55, 142.56, 144.57	79.08	12.76		
11	CDCl ₃	153.47	81.15	83.04	111.74, 113.87, 130.04, 138.36, 139.37, 154.28	62.16	13.92	56.73 (OMe)	
III	HSO₃F	165.74	81.89	101.39	112.28, 118.09, 131.42, 137.21, 151.11, 164.06	78.34	12.73	61.43 (OMe)	
Im	CDCl ₃	153.29	86.66	81.90	124.37, 125.32, 130.70, 137.99, 140.79, 149.39	62.25	13.89	19.42 (CH ₃), 19.49 (CH ₃)	
IIm	HSO ₃ F	165.99	82.80	99.95	129.16, 129.81, 140.64, 140.89, 145.16, 145.96	78.83	12.76	19.51 (CH ₃), 21.63 (CH ₃)	
In	CDCl ₃	153.45	82.78	84.19	121.66, 132.73	62.14	13.90		
IIn	HSO ₃ F	166.05	81.62	104.94	121.57, 135.86	78.06	12.78		

Table 4. ¹³C NMR spectra of ethyl 3-arylpropynoates **If–In** (CDCl₃, 25°C) and ions **IIf–IIn** derived therefrom in fluorosul-fonic acid at -80° C

^a Proton-coupled spectrum.

corresponding signal of the Z isomer (Table 5). An additional support to the above assignment was obtained by NOESY experiment (CDCl₃, 25°C) performed for isomer mixture E-**Vp**/Z-**Vp** which was isolated in a preparative amount by addition of trifluoromethanesulfonic acid to methyl 3-phenylpropynoate (**Ip**) (see Experimental). The minor isomer (Z-**Vp**), though its fraction in the mixture was as small as 5% (Table 5, run no. 9), showed a strong correlation between the vinyl proton (δ 6.73 ppm in HSO₃F) and *ortho*-protons in the benzene ring. No analogous correlation was found for the major component (*E*-**Vp**, δ 6.62 ppm in HSO₃F; Table 5). The existence of such correlation in the NOESY spectrum indicates spatially close location of the corresponding structural fragments, which is possible only in the *Z* isomer.

As follows from the data in Table 5, isomer mixtures **IVd**, **IVe**, **IVl**, **IVo–IVq**, **Vo**, and **Vp** contain mainly the *E* isomers whose fraction reaches 95%; they result from *syn*-addition of superacids HSO₃F and CF₃SO₃H at the triple carbon–carbon bond. The *E*/*Z*isomer ratio depends on the temperature: raising the

 $R = H, Ar = 4 - FC_6H_4 (d), 4 - MeO - 3 - O_2NC_6H_3 (e), C_6H_5 (o); R = Et, Ar = 4 - MeO - 3 - O_2NC_6H_3 (l); R = Me, Ar = C_6H_5 (p), 4 - FC_6H_4 (q).$

temperature to 0°C (the reaction was performed at -40° C) induces *E*-*Z* isomerization (cf. run nos. 1, 2) and 5, 6 in Table 5). Isomer mixtures IVe and IVI, which were obtained in HSO₃F at 0°C, contained the corresponding Z isomers as the major components; presumably, the reason is the presence of an electrondonor methoxy group in the para-position with respect to the double C=C bond, which facilitates isomerization. Furthermore, when a mixture of trifluoromethanesulfonates *E*-Vp and *Z*-Vp (initial isomer ratio 95:5; Table 5, run no. 9) was stored for three months without a solvent at room temperature, the isomer ratio changed to 21:79. The data on E-Z isomerization of compounds IVd, IVo, and Vp indicate that addition of HSO₃F and CF₃SO₃H to 3-arylpropynoic acid derivatives initially gives the corresponding E isomers as kinetically controlled products (syn-addition at the triple bond) which are then transformed into thermodynamically more stable Z isomers (anti-addition products). Olah and Spear [10] postulated that addition of HSO₃F to acetylenecarboxylic acids initially gives

anti-adducts (*Z* isomers) which then undergo fast isomerization into *syn*-adducts (*E* isomers).

The known methods for the synthesis of vinyl trifluoromethanesulfonates are based on reactions of carbonyl compounds with trifluoromethanesulfonic anhydride in the presence of bases [9, 11]. The main disadvantage of these procedures is low regio- and stereoselectivity. The addition of HSO₃F and CF₃SO₃H to 3-arylpropynoic acid derivatives, described in the present article, can be regarded as a simple, effective, and selective synthetic route to fluorosulfonates and trifluoromethanesulfonates like **IV** and **V**.

EXPERIMENTAL

The ¹H, ¹³C, and ¹⁹F NMR spectra of solutions in CDCl₃ and CD₃OD were recorded on Bruker AM-500 (500, 125.76, and 470 MHz, respectively) and Bruker AVANCE 300 spectrometers (300, 75, and 300 MHz, respectively). The chemical shifts were measured relative to the solvent signals (¹H: CHCl₃, δ 7.25 ppm;

Run no.	Initial compound no.	Superacid, temperature	Products	E/Z-Isomer ratio	δ_{2-H} , ppm	
1	Id	HSO ₃ F, –40°C	<i>E-</i> IV d/ <i>Z-</i> IV d	87:13	6.58/6.65	
2	Id	HSO ₃ F, 0°C	<i>E</i> - IVd / <i>Z</i> - IV d	65:35	6.57/6.61	
3	Ie	HSO ₃ F, 0°C	Z-IVe	100	6.85	
4	п	HSO ₃ F, 0°C	E-IVI/Z-IVI	20:80	6.78/6.87	
5	Іо	HSO ₃ F, –40°C	E-IVo/Z-IVo	90:10	6.65/6.72	
6	Іо	HSO ₃ F, 0°C	E-IVo/Z-IVo	76:24	6.62/6.71	
7	Іо	CF ₃ SO ₃ H, 0°C	E-Vo/Z-Vo	93:7	6.61/6.70	
8	Ір	HSO ₃ F, 0°C	E-IVp/Z-IVp	78:22	6.64/6.71	
9	Ір	CF ₃ SO ₃ H, 0°C	E-Vp/Z-Vp	95:5	6.62/6.73	
10	Iq	HSO ₃ F, –30°C	E-IVq/Z-IVq	89:11	6.60/6.70	

Table 5. Addition of fluorosulfonic and trifluoromethanesulfonic acids to compounds Id, Ie, II, and Io–Iq^a

^a In an NMR ampule (see Experimental).

CD₃OD, δ 3.31 ppm; ¹³C: CDCl₃, δ_C 77.0 ppm; CD₃OD, δ_C 49.0 ppm) or CFCl₃ (¹⁹F: δ_F 0.0 ppm). The ¹H and ¹³C NMR spectra of cationic species in superacids (HSO₃F and CF₃SO₃H) were recorded on a Bruker AVANCE 400 spectrometer at 400 and 100 MHz, respectively, using methylene chloride as internal reference (δ 5.32 ppm, δ_C 77.0 ppm). The IR spectra were obtained from solutions in CHCl₃ on a Specord 75IR spectrophotometer. The mass spectra (electron impact, 70 eV) were run on MKh-1321 and TSQ 700 Finigan MAT instruments. NOESY experiment was performed with a solution of 50 mg of isomer mixture *E*-**Vp**/*Z*-**Vp** in 1 ml of CDCl₃ at 25°C using a Bruker AVANCE 400 instrument.

Initial ethyl 3-arylpropynoates **If–In** were synthesized by the procedures reported in [16, 17]. 3-Arylpropynoic acids **Ia–Ie** were obtained by hydrolysis of the corresponding ethyl esters in the system KOH– EtOH–H₂O. Methyl 3-arylpropynoates **Ip** and **Iq** were prepared by methylation of the corresponding 3-arylpropynoic acids with dimethyl sulfate according to [18]. The properties of compounds **II**, **Ip**, and **Iq** were reported by us previously [17].

3-(3-Nitrophenyl)propynoic acid (Ia). mp 145–147°C; published data [19]: mp 141–142°C.

3-(4-Nitrophenyl)propynoic acid (Ib). mp 198–200°C; published data [19]: mp 198°C. ¹H NMR spectrum (500 MHz, CD₃OD), δ , ppm: 7.81 d (2H, H_{arom}, J = 8.8 Hz), 8.28 d (2H, H_{arom}, J = 8.8 Hz).

3-(4-Cyanophenyl)propynoic acid (Ic). Sublimes at 200°C. ¹H NMR spectrum (500 MHz, CD₃OD), δ , ppm: 7.74 d (2H, H_{arom}, J = 8.3 Hz), 7.79 d (2H, H_{arom}, J = 8.3 Hz). Mass spectrum: m/z 171 $[M]^+$. Found, %: C 69.97; H 3.09; N 8.00. C₁₀H₅NO₂. Calculated, %: C 70.18; H 2.94; N 8.18.

3-(4-Fluorophenyl)propynoic acid (Id). mp 155– 157°C. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.01–7.07 m (2H, H_{arom}), 7.54–7.59 m (2H, H_{arom}), ~13 br.s (1H, OH). Found, %: C 65.89; H 3.11. C₉H₅FO₂. Calculated, %: C 65.86; H 3.07.

3-(4-Methoxy-3-nitrophenyl)propynoic acid (Ie). mp 189–191°C. Mass spectrum: *m*/*z* 221 [*M*]⁺. Found, %: C 54.18; H 3.02; N 6.47. C₁₀H₇NO₅. Calculated, %: C 54.31; H 3.19; N 6.33.

Ethyl 3-(3-nitrophenyl)propynoate (If). Oily substance. IR spectrum, v, cm⁻¹: 1350, 1525, 1710 (C=O), 2220 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm: 1.29 t (3H, Me, J = 7.1 Hz), 4.24 q (2H, CH₂, J = 7.1 Hz), 7.55 d.d (1H, H_{arom}, J = 8.3, 7.7 Hz),

7.81 d.d.d (1H, H_{arom}, J = 7.7, 1.4, 1.1 Hz), 8.22 d.d.d (1H, H_{arom}, J = 8.3, 2.2, 1.1 Hz), 8.31 d.d (1H, H_{arom}, J = 2.2, 1.4 Hz). Mass spectrum, m/z (I_{rel} , %): 219 (13) [M]⁺, 174 (75) [M - OEt]⁺, 147 (100), 128 (55), 101 (23), 100 (21), 74 (34). Found, %: C 60.15; H 4.09; N 6.44. C₁₁H₉NO₄. Calculated, %: C 60.28; H 4.14; N 6.39.

Ethyl 3-(4-nitrophenyl)propynoate (Ig). mp 124–126°C; published data: mp 120–122°C [20]. IR spectrum, v, cm⁻¹: 1350, 1520, 1710 (C=O), 2230 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 1.30 t (3H, Me, *J* = 7.1 Hz), 4.26 q (2H, CH₂, *J* = 7.1 Hz), 7.68 d (2H, H_{arom}, *J* = 8.9 Hz), 8.18 d (2H, H_{arom}, *J* = 8.9 Hz).

Ethyl 3-(4-cyanophenyl)propynoate (Ih). mp 67– 68°C; published data [20]: mp 66–68°C. IR spectrum, ν, cm⁻¹: 1710 (C=O); 2220, 2235 (C=C, C=N). ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm: 1.29 t (3H, Me, J = 7.2 Hz), 4.25 q (2H, CH₂, J = 7.2 Hz), 7.60 d (2H, H_{arom}, J = 8.6 Hz), 7.63 d (2H, H_{arom}, J = 8.6 Hz).

Ethyl 3-(4-acetylphenyl)propynoate (Ii). mp 82.0–82.5°C. IR spectrum, v, cm⁻¹: 1690, 1710 (C=O); 2220, 2250 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm: 1.24 t (3H, Me, J = 7.1 Hz), 2.49 s (3H, Me), 4.19 q (2H, CH₂, J = 7.1 Hz), 7.53 d (2H, H_{arom}, J = 8.5 Hz), 7.83 d (2H, H_{arom}, J = 8.5 Hz). Found, %: C 72.14; H 5.61. C₁₃H₁₂O₃. Calculated, %: C 72.21; H 5.59.

Ethyl 3-(4-methoxycarbonylphenyl)propynoate (Ij). mp 46–48°C [20]. IR spectrum, v, cm⁻¹: 1710, 1730 (C=O); 2215, 2250 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 1.30 t (3H, Me, J =7.1 Hz), 3.87 s (3H, OMe), 4.25 q (2H, CH₂, J =7.1 Hz), 7.58 d (2H, H_{arom}, J = 8.5 Hz), 7.97 d (2H, H_{arom}, J = 8.5 Hz).

Ethyl 3-(3,4-dinitrophenyl)propynoate (Ik). mp 72–73°C. IR spectrum, v, cm⁻¹: 1360, 1550, 1710 (C=O), 2245 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 1.34 t (3H, Me, J = 7.1 Hz), 4.30 q (2H, CH₂, J = 7.1 Hz), 7.91 d.d (1H, H_{arom}, J = 8.4, 1.6 Hz), 7.95 d (1H, H_{arom}, J = 8.4 Hz), 8.06 d (1H, H_{arom}, J = 1.6 Hz). Found, %: C 49.88; H 3.00; N 10.43. C₁₁H₈N₂O₆. Calculated, %: C 50.01; H 3.05; N 10.60.

Ethyl 3-(4-methoxy-3-nitrophenyl)propynoate (II). mp 86–87°C. IR spectrum, v, cm⁻¹: 1355, 1525, 1700 (C=O), 2220 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 1.31 t (3H, Me, J = 7.1 Hz), 3.96 s (3H, OMe), 4.25 q (2H, CH₂, J = 7.1 Hz), 7.08 d (1H, H_{arom}, J = 8.7 Hz), 7.70 d.d (1H, H_{arom}, J = 8.7, 2.1 Hz), 8.00 d (1H, H_{arom}, J = 2.1 Hz). Found, %: C 57.69; H 4.41; N 5.74. C₁₂H₁₁NO₅. Calculated, %: C 57.83; H 4.45; N 5.62.

Ethyl 3-(2,5-dimethyl-4-nitrophenyl)propynoate (**Im**). mp 68–69°C. IR spectrum, v, cm⁻¹: 1350, 1520, 1710 (C=O), 2230 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm: 1.31 t (3H, Me, J = 7.1 Hz), 2.45 s (3H, Me), 2.47 s (3H, Me), 4.25 q (2H, CH₂, J = 7.1 Hz), 7.43 s (1H, H_{arom}), 7.76 s (1H, H_{arom}). Found, %: C 63.21; H 5.32; N 5.74. C₁₃H₁₃NO₄. Calculated, %: C 63.15; H 5.30; N 5.66.

Ethyl 3-[(4-ethoxycarbonylethynyl)phenyl]propynoate (In). mp 92–94°C. IR spectrum, ν, cm⁻¹: 1700 (C=O), 2215, 2250 (C=C). ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm: 1.30 t (3H, Me, J = 7.1 Hz), 4.25 q (2H, CH₂, J = 7.1 Hz), 7.52 s (4H, H_{arom}). Found, %: C 71.26; H 5.20. C₁₆H₁₄O₄. Calculated, %: C 71.10; H 5.22.

General procedure for generation of ions IIa-IIn in HSO₃F and preparation of E/Z-isomeric fluorosulfonates IVd, IVe, IVl, and IVo-IVq in HSO₃F and trifluoromethanesulfonates Vo and Vp in CF₃SO₃H in situ. An NMR ampule was charged with 0.8-1 ml of HSO₃F (mp -89°C) and cooled to approximately -110°C (using ethanol-liquid nitrogen), and 5-30 mg of compound Ia-In was added. The temperature was raised to -78°C, and a Teflon capillary (1 mm i.d.) was immersed into the ampule till its bottom. A slight stream of argon was passed through the capillary over a period of 5-15 min to obtain a homogeneous solution. The capillary was withdrawn, and methylene chloride (internal reference) was added. The ¹H and ¹³C NMR spectra of ionic species **IIa–IIn** were recorded at -80 and 0°C (Tables 1-4). The ¹H NMR spectra of isomeric fluorosulfonates IVd, IVe, IVl, and **IVo–IVq** were recorded in HSO₃F at –40 and 0°C (Table 5). Solutions of E/Z-isomeric trifluoromethanesulfonates Vo and Vp in CF₃SO₃H were prepared in a similar way, by adding 5-30 mg of substrate Io or Ip to 0.8-1 ml of CF₃SO₃H (mp -34°C) placed in an NMR ampule and frozen at -78°C, followed by homogenization at 0°C. The ¹H and ¹³C NMR spectra of compounds E/Z-Vo and E/Z-Vp were recorded at 0°C (Table 5).

The synthesis and properties of fluorosulfonates E/Z-**IVq** were described by us previously [6].

Trifluoromethanesulfonates E/Z-**Vp**. A solution of 0.2 g (1.25 mmol) of methyl 3-phenylpropynoate (**Ip**) in 10 ml of anhydrous methylene chloride was

cooled to -30°C, 1.1 ml (12.5 mmol) of CF₃SO₃H was added dropwise over a period of 5 min under vigorous stirring, and the mixture was allowed to warm up to 0°C and was stirred for an additional 0.5 h. When the reaction was complete, the mixture was added dropwise to a suspension of KHCO₃ in MeOH, cooled to -20°C. The resulting mixture was diluted with water and extracted with diethyl ether. The extract was washed with water and dried over Na₂SO₄, and the solvent was distilled off to obtain 230 mg (59%) of a mixture of isomeric trifluoromethanesulfonates E-Vp and Z-Vp (95:5) as a light vellow oily material. Compounds E-Vp and Z-Vp decomposed on attempted chromatographic separation in a column charged with silica gel. On storage at room temperature without a solvent, isomer E-Vp was gradually converted into Z-Vp. The spectral parameters of particular isomers *E*-Vp and *Z*-Vp were derived from the spectra of their mixture.

Methyl (*E*)-3-phenyl-3-trifluoromethylsulfonyloxy-2-propenoate (*E*-Vp). ¹H NMR spectrum (300 MHz, CDCl₃), δ, ppm: 3.69 s (3H, OMe), 6.19 s (1H, =CH–), 7.41–7.57 m (5H, H_{arom}). ¹³C NMR spectrum (75 MHz, CDCl₃), $\delta_{\rm C}$, ppm: 52.06 (OMe), 113.07 (=C²), 118.25 q (CF₃, *J*_{CF} = 318 Hz), 128.19 (C^m), 129.07 (C^o), 130.42 (Cⁱ), 131.60 (C^p), 159.12 (C³), 163.75 (C=O). ¹⁹F NMR spectrum (300 MHz, CDCl₃): $\delta_{\rm F}$ –74.17 ppm, s (CF₃).

Methyl (Z)-3-phenyl-3-trifluoromethylsulfonyloxy-2-propenoate (Z-Vp). ¹H NMR spectrum (300 MHz, CDCl₃), δ , ppm: 3.84 s (3H, OMe), 6.25 s (1H, =CH–), 7.36–7.58 m (5H, H_{arom}).

Mass spectrum of isomer mixture E/Z-**Vp**, m/z(I_{rel} , %): 310 (82) [M]⁺, 279 (45), 245 (14), 215 (28), 177 (27), 149 (89), 121 (62), 105 (97), 77 (100). Found, %: C 43.05; H 3.31. C₁₁H₉F₃O₅S. Calculated, %: C 42.58; H 2.92.

REFERENCES

- Vasilyev, A.V., Walspurger, S., Pale, P., and Sommer, J., *Tetrahedron Lett.*, 2004, vol. 45, p. 3379; Vasilyev, A.V., Walspurger, S., Haouas, M., Sommer, J., Pale, P., and Rudenko, A.P., *Org. Biomol. Chem.*, 2004, p. 3483; Walspurger, S., Vasilyev, A.V., Sommer, J., and Pale, P., *Tetrahedron*, 2005, vol. 61, p. 3559.
- Vasil'ev, A.V., Walspurger, S., Pale, P., Sommer, J., Haouas, M., and Rudenko, A.P., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 1769.
- Savechenkov, P.Yu., Rudenko, A.P., and Vasil'ev, A.V., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 1065.

- Rudenko, A.P., Savechenkov, P.Yu., and Vasil'ev, A.V., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 1377.
- Savechenkov, P.Yu., Rudenko, A.P., and Vasil'ev, A.V., Materialy molodezhnoi konferentsii po organicheskoi khimii "Sovremennye tendentsii organicheskoi khimii" (Proc. Youth Conf. on Organic Chemistry "Current Trends in Organic Chemistry"), St. Petersburg, 2004, p. 36; Vasilyev, A.V., Walspurger, S., Savechenkov, P.Yu., Pale, P., Sommer, J., and Rudenko, A.P., *ibid.*, p. 64.
- 6. Savechenkov, P.Yu., Rudenko, A.P., and Vasil'ev, A.V., *Russ. J. Org. Chem.*, 2004, vol. 40, 1633.
- Olah, G.A., Prakash, G.K.S., and Sommer, J., Superacids, New York: Wiley, 1985; Olah, G.A. and Schleyer, P.v.R., Carbonium Ions, New York: Wiley, 1968–1976, vols. 1–5; Prakash, G.K.S. and Schleyer, P.v.R., Stable Carbocation Chemistry, New York: Wiley, 1997.
- 8. Stang, P.J. and Summerville, R.H., J. Am. Chem. Soc., 1969, vol. 91, p. 4600.
- 9. Stang, P.J. and Schleyer, P.v.R., J. Am. Chem. Soc., 1974, vol. 96, p. 1110.
- Olah, G.A. and Spear, R.J., J. Am. Chem. Soc., 1975, vol. 97, p. 1845.
- Zyk, N.V., Denisko, O.V., and Zefirov, N.S., *Zh. Org. Khim.*, 1994, vol. 30, p. 461; Stang, P.J., Hanack, M., and Subramanian, L.R., *Synthesis*, 1982, p. 85; Weiss, H.M., Touchette, K.M., and Jones, G., *J. Chem. Soc.*, *Perkin Trans.* 2, 2002, p. 756.
- 12. Negishi, E. and Anastasia, L., *Chem. Rev.*, 2003, vol. 103, p. 1979.

- Dillinger, S., Bertus, P., and Pale, P., Org. Lett., 2001, vol. 3, p. 1661; Halbes, U., Bertus, P., and Pale, P., *Tetrahedron Lett.*, 2001, vol. 42, p. 8641; Halbes, U. and Pale, P., *Tetrahedron Lett.*, 2002, vol. 43, p. 2039.
- 14. Bertus, P. and Pale, P., J. Organomet. Chem., 1998, vol. 567, p. 173.
- Olah, G.A. and Schleyer, P.v.R., *Carbonium Ions*, New York: Wiley, 1976, vol. 5, p. 2098; Olah, G.A., Spear, R.J., Westerman, P.W., and Denis, J.-M., *J. Am. Chem. Soc.*, 1974, vol. 96, p. 5855.
- Barabanov, I.I., Fedenok, L.G., and Shvartsberg, M.S., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1998, p. 2327; Rudenko, A.P., Vasil'ev, A.V., Savechenkov, P.Yu., Sommer, J., Haouas M., and Walspurger, S., *Intermediaty. Sintez, protonirovanie i okislenie atsetilenovykh soedinenii* (Intermediates. Synthesis, Protonation, and Oxidation of Acetylenic Compounds), St. Petersburg: Sankt-Peterb. Gos. Lesotech. Akad., 2003, no. 2, p. 76; Shvartsberg, M.S., Barabanov, I.I., and Fedenok, L.G., *Usp. Khim.*, 2004, vol. 73, p. 171.
- 17. Savechenkov, P.Yu., Vasil'ev, A.V., and Rudenko, A.P., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 1279.
- 18. Freudenberg, K. and Wilke, G., *Chem. Ber.*, 1952, vol. 85, p. 78.
- Shchelkunov, A.V. and Ivanova, N.N., *Fiziko-khimicheskie konstanty atsetilenovykh soedinenii* (Physicochemical Constants of Acetylenic Compounds), Alma-Ata: Nauka, 1988, p. 100.
- 20. Sakamoto, T., Shiga, F., Yasuhara, A., Uchiyama, D., Kondo, Y., and Yamanaka, H., *Synthesis*, 1992, p. 746.